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In this article, a simple approach with two basic inequalities (Cauchy–Schwarz inequality and arithmetic–
geometric mean inequality) is used to solve the integrated single-vendor single-buyer inventory problem
developed by Wu and Ouyang (Wu, K.-S. and Ouyang, L.-Y., 2003. An integrated single-vendor single-buyer
inventory system with shortage derived algebraically. Production Planning & Control, 14 (6), 555–561). Without
the method of completing perfect square, the proposed approach yields the global minimum of the integrated
total cost per year more easily than the algebraic approach used by Wu and Ouyang (2003). In addition, for
people without the background of calculus, it is more useful to determine the buyer’s economic order quantity
and the vendor’s optimal number of deliveries.

Keywords: without derivatives; arithmetic–geometric mean inequality; Cauchy–Schwarz inequality; single-
vendor single-buyer; shortage

1. Introduction

For many people who lack the knowledge of calculus,
the method of completing perfect square is proposed to
solve the economic order quantity (EOQ) or economic
production quantity (EPQ) models in several research
articles, for example Grubbström and Erdem (1999),
Chang (2004), Ronald et al. (2004), Chang et al. (2005)
and Sphicas (2006). In 2003, Wu and Ouyang
developed an integrated single-vendor single-buyer
inventory system with shortage. Without differential
calculus, they extended Grubbström and Erdem’s
(1999) method to solve the three-variable problems
algebraically. However, their method of completing
perfect square is still complex.

In contrast to all papers mentioned above, Teng
(in press) proposed a simple method by using the
arithmetic–geometric mean inequality (or more briefly
the AM–GM inequality) theorem to compute the
global minimum economic order quantities. For
EOQ or EPQ models to determine only one decision
variable, i.e. the size of order, Teng’s method yields the
global minimum solution explicitly and immediately
but fails to solve the multi-variable inventory problem.

In this article, we propose a simple approach with
basic inequalities such as Cauchy–Schwarz inequality
and AM–GM inequality to solve Wu and Ouyang’s

model (2003). Without taking differential calculus or
using the method of completing the square, the
solution procedure proposed by using basic inequal-
ities is easier to find the optimal solutions (the buyer’s
lot size per order, maximum backorder level and the
vendor’s number of deliveries). In addition, the
minimum integrated total cost of the proposed model
is obtained more directly.

2. Model discussion

In contrast to the method of completing the

square adopted by Wu and Ouyang (2003), two basic
inequalities (Cauchy–Schwarz inequality and AM–GM
inequality) are used to solve the integrated inventory
problems including three decision variables: Q (buyer’s
lot size per order), B (maximum backorder level) and n
(the vendor’s number of deliveries). First, these
inequalities are shown shortly as follows:

AM–GM mean inequality: Let x1,x2, . . . , xn be n
positive real numbers, then

x1 þ x2 þ � � � þ xn
n

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2 � � � xnn
p

,

with the equality holds if only x1¼ x2¼ � � � ¼ xn.
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Cauchy–Schwarz inequality: Let a1, a2, . . . , an and

b1, b2, . . . , bn be two vectors in n space, then

a21 þ a22 þ � � � þ a2n
� �

b21 þ b22 þ � � � þ b2n
� �

� a1b1 þ a2b2 þ � � � þ anbnð Þ
2

with the equality holds if only a1/b1¼ a2/b2¼ � � �

¼ an/bn.

Now we can begin to discuss the model developed

by Wu and Ouyang (2003). The integrated total annual

cost function simplified by Wu and Ouyang (2003) can

be written in the form

TC ¼
dCb
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The Cauchy–Schwarz and AM–GM inequalities

imply that
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The first inequality follows easily from Cauchy–

Schwarz inequality and the second follows from AM–

GM inequality, respectively. Consequently, TC attains

its minimum onffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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with equality holds if onlyffiffiffiffiffiffi
Hb

p
1� B=Qð Þffiffiffiffiffi
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After some algebraic manipulation, the optimal Q and

B are given by

Q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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respectively.
From Equation (2), because
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if HbSb/(HbþSb)þHv(2d/p� 1)� 0, it can be easily

observed that the integrated total cost per year TC has

a global minimum as n¼ 1. Therefore, we have

TC �
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and consequently,

Q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d CbþCvð Þ

HbSb= HbþSbð ÞþHvd=p

s
and B� ¼

Hb

HbþSb
Q�:

ð5Þ

On the other hand, if HbSb/(HbþSb)þHv(2d/

p� 1)4 0, then HbSb/(HbþSb)þHv(2d/p� 1) and

(1� d/p) are both positive real numbers. We recall
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Equation (2) and apply AM–GM inequality again, it is

easy to get

TC2
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Hence in this case, we can determine the optimal n that

minimises TC as

Cv
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and so,

n ¼
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Since the number of deliveries must be a positive

integer, the solution obtained in Equation (6) will be

a good approximation to find the vendor’s optimal

number of deliveries in order to avoid using a brute

force enumeration.

3. Conclusions

In this article, we provide a simple approach to

solve Wu and Ouyang’s (2003) model by using two

basic inequalities (Cauchy–Schwarz inequality and

AM–GM inequality). There are a lot of ways to

solve this problem, but this is one of the most

elementary methods, requiring only basic knowledge

of inequalities. Without taking complex differential

calculus or using complicated quadratic expression

derived by algebraic manipulations, we can obtain

the global minimum solutions much more easily and

simply.
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